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The human gastrointestinal (GI) tract is the habitat for
hundreds of microbial species, of which many cannot be culti-
vated readily, presumably because of the dependencies
between species1. Studies of microbial co-occurrence in the
gut have indicated community substructures that may reflect
functional and metabolic interactions between cohabiting
species2,3. To move beyond species co-occurrence networks,
we systematically identified transcriptional interactions
between pairs of coexisting gut microbes using metagenomics
and microarray-based metatranscriptomics data from 233 stool
samples from Europeans. In 102 significantly interacting
species pairs, the transcriptional changes led to a reduced
expression of orthologous functions between the coexisting
species. Specific species–species transcriptional interactions
were enriched for functions important for H2 and CO2 homeo-
stasis, butyrate biosynthesis, ATP-binding cassette (ABC)
transporters, flagella assembly and bacterial chemotaxis, as
well as for the metabolism of carbohydrates, amino acids and
cofactors. The analysis gives the first insight into the microbial
community-wide transcriptional interactions, and suggests that
the regulation of gene expression plays an important role in
species adaptation to coexistence and that niche segregation
takes place at the transcriptional level.

The gut microbiota is generally considered an ecosystem with many
biological interactions2–4. Together with host effect5, dietary habits6,
antibiotics7 and other external factors8,9, interactions between microbes
may also be a defining factor for the gutmicrobiota. Known cooperative
activities of microbial species include the formation of biofilms10,

fermentation of complex substrates11 and exchange of metabolites12,
and antagonistic interactions that include competition for resources13

or adhesion sites14 and the production of antimicrobial compounds15.
At the community level, microbes with shared genetic potential tend
to coexist in the human GI tract, which suggests that the microbiome
ensemble is driven by habitat filtering4. Classic population ecology
theory, however, predicts that competition between two undifferen-
tiated species eventually will lead to the extinction of one of them16,
which raises the question of how microbes with overlapping
functional potential differentiate in the human GI tract. One possibility
is that coexistence with other species invokes differentiation by
transcriptional adaptations.

In vitro co-cultivations of selected species pairs have shown that
microbes influence each other’s gene expression12,17. Transcriptional
interactions have also been observed in a co-inoculation of
Bacteroides thetaiotaomicron and Eubacterium rectale in germ-free
mice13, which suggests that this may be a mechanism for avoiding
or reducing competition and for niche segregation.

Although previous gut microbiome transcriptomics studies have
provided a global overview of transcriptional activities18, its variability
between individuals19 and the influence of external factors7, they have
not studied transcriptional interactions in a complex community.

Results
To study transcriptional activity in the gut we obtained microarray-
based metatranscriptomics profiles from the 693,406 most-common
gut microbiome genes20 and abundance profiles for 741 metagenomic
species21 across 233 previously DNA-sequenced human-stool
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samples21,22 (Supplementary Table 1). We found significantly
expressed genes from 322 species, which represented 86% of the
species that occurred in at least 10% of the samples (Student’s
t-test, q value ≤0.05). Overall, we observed a tendency (Spearman
correlation coefficient, r = 0.37) for abundant species to have more
genes identified as significantly expressed than the less-abundant
species (Supplementary Fig. 1), and that the number of expressed
genes was robust to the reduced detection sensitivity of the meta-
genomics sequencing (Supplementary Fig. 2). In agreement with
previous studies7,18,19, we observed that the majority of the transcrip-
tionally active species belonged to the Firmicutes and Bacteroidetes
phyla with 231 and 51 species, and with 83 and 12% of all the
expressed genes, respectively (Supplementary Fig. 3a), and that
the archaea Methanobrevibacter smithii was among the top 5% of
microbial species with the most expressed genes. Furthermore, we
confirm that, although the species composition differed between
individual samples, the overall distribution of expressed Kyoto
Encyclopedia of Genes and Genomes (KEGG) functions is relatively
constant across individuals18 (Supplementary Fig. 3b).

However, any two species that coexist in an environment may
affect each other’s activity in a number of ways, for example, by
direct inhibition or activation, by producing or consuming meta-
bolites and by spatial competition. To identify potential interspecies
transcriptional interactions, we tested for differential gene
expression associated with pairwise species co-occurrence
(Fig. 1a). This was done by comparing the expression of a given
gene in a potential responder species across samples in which a
companion species was either detected or absent (Fig. 1b (details
in Methods)). In total, we identified 4,735 genes with transcriptional

profiles significantly associated with the coexistence of specific
species pairs (ANOVA, q value <0.1 (Supplementary Table 2)).
The majority of these transcriptional adaptations (59%) were
found in a small subset of the tested species–species pairs and
showed significant enrichment in 249 species–species interactions
(Fisher’s exact test, P < 0.05, Bonferroni corrected). These encom-
passed 53 responder species and 142 companion species (Fig. 1c
(Supplementary Information and Supplementary Table 3 give
details)). The average number of genes affected in a species–
species interaction was 31 (±4 s.e.m.), and the interaction that
affected most genes was observed between Ruminococcus gnavus
and the Clostridiales sp. (MGS:41, from Nielsen et al.21), with
542 R. gnavus genes (39% of the measured genes) expressed differen-
tially. To verify these findings, we subsequently designed a series of
co-cultivation experiments. In these, 11 out of 13 genes from five
different responder–companion species pairs showed expression
behaviour similar to that observed in the microbiome (Supplementary
Fig. 4 and Supplementary Table 4).

What we observed as microbial transcriptional interactions
could, to a large extent, be the consequences of environmental
changes caused by activities of a companion organism, which in
turn trigger transcriptional adaptation in the responder organism.
The species pair Catenibacteriummitsuokai and B. caccae represents
such a case. When observed independently, both species signifi-
cantly expressed starch phosphorylase (EC 2.4.1.1), a gene that is
important for starch degradation. The C. mitsuokai orthologue to
this gene was, however, silenced during coexistence with B. caccae,
possibly because B. caccae, a known specialist in polysaccharide
metabolism23, could have depleted the available starch resources.
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Figure 1 | Microbial co-occurrence in the GI tract results in transcriptional adaptations between coexisting species. a, Conceptual visualization of the
experimental set-up for finding a companion species whose presence correlates with changes in a gene expression in a responder species. b, Examples of
transcriptional interactions that result in reduced expression (left) of a R. gnavus gene during coexistence with a Clostridiales sp. (MGS:41, q value = 1.95 × 10−16)
and elevated expression (right) of a B. hydrogenotrophica gene during coexistence with B. bifidum (q value = 2.9 × 10−8). The microarray signals were corrected
for the abundances of the responder species and are shown as box plots with a horizontal line in the box that represents the median and with whiskers that
indicate the lowest and highest point within 1.5 interquartile ranges of the lower or upper quartile, respectively. c, Microbial interactome in the human-gut
microbiome. Significant species–species transcriptional associations were established with Fisher’s exact test (P value <0.05 after Bonferroni correction) and
are represented as a network in which species are depicted as circles. The arrows point from a companion to a responder species and their width increases
with the number of genes with a changed gene expression in that pair. For simplicity, only interactions with at least ten modulated genes are shown.
Species names are indicated for six responder species mentioned in the main text. Blue, majority of genes activated; red, majority of genes silenced.
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This may serve as an example of a phenomenon that we observed
across 102 species pairs (41% of all interacting pairs) in which coex-
istence-associated expressed genes are significantly enriched for
orthologues to genes that are significantly expressed in the compa-
nion species (Fisher’s exact test, P < 0.05). Importantly, the majority
of these orthologous genes (78%) were downregulated during coex-
istence (Fig. 2 and Supplementary Table 5). This suggests a
decreased overlap in expressed functions in the interacting species
pairs and indicates that species of the human-gut microbiome
undergo niche segregation at the transcriptional level.

Among the transcriptionally modulated genes we observed a series
of functions important for anaerobic fermentation, which is central to
the colon-energy metabolism and results in incompletely oxidized
nutrient substrates and H2. Continued fermentation depends on
removal of H2 to stay energetically favourable and accumulation of
H2 and CH4 has been associated with bloating and irritable bowel
syndrome24. Part of the H2 is excreted through flatus and breath,
but a substantial part is anaerobically respired by a small subset of
key hydrogenotrophic gut microbes, which include M. smithii and
Blautia hydrogenotrophica24,25, which both showed coexistence-
associated regulation of their anaerobic respiration pathways
(Supplementary Table 2). In M. smithii the expression of genes
involved in the methanogenesis was reduced when it was observed
together with either of two Lachnospiraceae sp. (MGS:45 and
MGS:91). In B. hydrogenotrophica the Wood–Ljungdahl pathway,
which yields acetate under H2 and CO2 consumption, was signifi-
cantly activated during coexistence with Bifidobacterium bifidum

(Fig. 3). The change in activity of the Wood–Ljungdahl pathway
observed in B. hydrogenotrophica might be driven by a cross-feeding
relationship with B. bifidum, as the latter species is a specialized carbo-
hydrate-fermenting species26 that produces the substrates for the CO2
fixation by the Wood–Ljungdahl pathway. In contrast, the coexistence
with each of five other species (Clostridium bartlettii, C. leptum,
Alistipes sp., B. pseudocatenulatum and B. dorei) repressed the
expression of the Wood–Ljungdahl pathway in B. hydrogenotrophica
(Fig. 3). Particularly interesting is the relationship with C. bartlettii,
which significantly expressed five orthologues from the Wood–Ljungdahl
pathway (Fig. 3b), suggesting that C. bartlettii may substitute
this activity.

In addition, we observed silencing of pathways for the biosyn-
thesis of short-chain fatty acids, the key end products of anaerobic
fermentation, significantly enriched in specific interacting pairs.
This was, for example, observed in B. hydrogenotrophica and a
Lachnospiraceae sp. (MGS:75) in response to coexistence with
Fusicatenibacter saccharivorans (MGS:37) and E. rectale, respect-
ively. Other transcriptional interactions were significantly enriched
for nutrient-uptake functions, such as ABC transporters or phos-
photransferase systems, flagella assembly and bacterial chemotaxis,
and so on (Fisher’s exact test, P < 0.05, Bonferroni corrected
(Supplementary Fig. 5 and Supplementary Table 6)). The two
most-frequent functional annotations across all the coexistence-
associated differentially expressed genes (Supplementary Table 7)
were the environment-sensing two-component systems27 and
the aminoacyl–transfer RNA biosynthesis pathway, which
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Figure 2 | Orthologous gene expression in a companion species coincides with modulation of a gene expression in a responder species. Gene orthology
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could be responses to altered nutrient availability in the local
environment. For instance, the expression of charged tRNA bio-
synthesis pathways is known to increases in response to low
amino acid concentrations to better scavenge the remaining
amino acids28,29.

Discussion
All environments pose a selective pressure on the species that live
in them, and hence enrich for species that share properties essential
for survival in the given conditions. In the human-gut microbiome
this leads to coexistence of microbial species with both comple-
mentary and overlapping functional properties4 that may expose
coexisting species to symbiotic or antagonistic interactions. In this
study we utilized a microarray-based metatranscriptomics data set,
which covers an unprecedented large set of 233 human-gut micro-
biome samples, to describe in situ transcriptional interactions by
studying differential gene expression associated with coexistence
between hundreds of specific gut microbial species. Interestingly,
a significant part of the coexistence-associated differentially
expressed genes shows a reduced expression when companion
species express orthologous genes, and in consequence this shows
that the functional overlap between species reduces. These obser-
vations stress that the activities of different microbes change in
association with the community composition and, importantly,
show that some microbes undergo niche segregation in the GI
tract at the level of gene expression. This may, in turn, explain
how closely related species can coexist over prolonged periods of
time, rather than being outcompeted and excluded from the eco-
system. This mechanism can be beneficial to the host, as it sustains
a diverse and rich gut microbial community with robustness to
perturbations, a characteristic that is associated with metabolic
health20. Furthermore, transcriptional adaptations may explain
why the functional output of the gut microbiome is so consistent
across individuals.

Although it is beyond the scope of a mere association analysis to
determine causality and the mechanisms behind these adaptations,
the bias towards reduced gene expression and enrichment of func-
tional categories such as nutrient uptake or anaerobic respiration
suggests that the mechanisms behind many of the observed

transcriptional adaptations may be indirect through sensing the
availability of local metabolites. The indirect effect of nutrient avail-
ability on the gene expression may also explain why two out of five
coexistence-associated gene expressions observed in situ failed to
reproduce in in vitro co-cultivations under rich nutrient conditions,
in which critical nutrients may be in excess. This cross-feeding
phenomenon is, however, less tangible as it requires a detailed
understanding of metabolic pathways, their interconnections and
the participating metabolites, whereas the identification of func-
tional orthology required for our detection of niche segregation is
entirely driven by sequence information.

This community-wide mapping of microbial transcriptional
interactions was limited to detect only interactions between pairs
of species. Therefore, our analysis may miss multispecies inter-
actions (as, for example, is known from soil-biofilm formation)
that have been shown to include up to four species30. In addition,
we observe a weak tendency for the more-abundant species to
have more-significantly expressed genes, which suggests that the
analysis best describes the more-abundant species. However, the
analysis was relatively robust to sensitivity differences between the
microarray and the metagenomic sequencing, as shown in
Supplementary Fig. 2. Together, these limitations suggest that the
number of expressed genes and interactions presented here are on
the conservative side.

In conclusion, we learn that the expression of some functions
is less affected by coexistence (for example, DNA replication),
whereas central metabolisms, which include the anaerobic respir-
atory pathway, environmental sensing and uptake of substrates,
vary more with the specific community context. This and the
observed specific species–species interactions is an important
insight that may help constrain future metabolic network model-
ling and extend it to include species interactions. This study also
adds to our understanding of how probiotics, faecal microbiota
transplant and bacterial cocktail inocula may depend on the
ability of species to adapt transcriptionally to the community
context they are placed in. Finally, the insight that species tran-
scriptionally adapt to each other further complicates micro-
biome-association analyses in that it highlights that species
activities are context specific.
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Methods
Microarray design. The human-gut microbiome microarray NimbleGen HD2 was
designed to characterize transcriptional activity in the human faecal microbiome as
described by Le Chatelier et al.20 In short, it contains three probes for each of 693,406
human-gut microbial genes, which were selected to represent genes that were observed
in 20 or more of 124 human-stool samples from Spanish and Danish individuals22. We
chose microarrays over RNA sequencing because the great majority of the output from
sequencing would probably originate from the rRNA of highly abundant species. This
would render interrogation of mRNA from less-abundant species impractical.
Although rRNA-depletion methods exist, such an approach could introduce biases in
the resulting data. In contrast, the DNA microarray only interrogates the mRNA
transcripts that are probed for.

Samples, RNA extraction and microarray hybridization. RNA was extracted from
233 human-stool samples (Supplementary Table 1) published in two previous
metagenomic studies22,21. The frozen faeces (200 mg) were aliquoted into 2.0 ml
microtubes using sterile spatulas. To each sample was added 400 µl of Tris-EDTA
buffer (1×), 500 µl phenol-chloroform isoamyl alcohol (in a 5:1 mix of phenol
(pH 4 from Eurobio) and chloroform:isoamyl alcohol (24:1 from Bioblock)), 25 µl of
SDS (20% (Ambion)), 50 µl of sodium acetate (3 M, pH 4.8 (Sigma)) and 0.6 g of
zirconia/silica beads (0.1 mm (BioSpec Product)), and then mixed by vortexing.
Then, the mixture was shaken using a FastPrep FP220A (MP Biomedicals) at 5 m s–1

for 40 seconds, cooled on ice for 90 seconds and again shaken at 5 m s–1 for
20 seconds. After centrifugation at 13,000g, 400 µl of the supernatant was mixed
with 500 µl of chloroform:isoamylalcohol (24:1) and homogenized by returning
thoroughly to the tube. The homogenate was centrifuged at 13,400g at 4 °C for
15 minutes and 50 µl was transferred in a new 1.5 ml microtube. The following steps
were performed using the ‘High Pure Isolation’ kit (Roche) according the
manufacturer’s recommendations. Residual genomic DNAwas removed in two steps
using the RNase-free DNase I (Promega) for 30 minutes at 37 °C, once as
recommended in the High Pure Isolation kit and the second time after the elution
step. RNA samples with a RNA integrity number over 5 (RIN, RNA Nano LabChip
bioanalyzer from Agilent) were reverse transcribed to complementary DNA
(Invitrogen, Superscript DS cDNA Synthesis kit protocol with random hexamer
primers) and Cy3 labelled, hybridized to custom-designed NimbleGen HD2 arrays,
washed and scanned according to the NimbleGen One Color Labeling Protocol for
Expression Analysis v 3.0 (24 hours of incubation at 42 °C). The Ethical Committees
of the Capital Region of Denmark (HC-2008-017) approved the study.

Microarray-data processing. The microarray data were background corrected and
quantile normalized, and an expression index calculation at the gene level was done.
To analyse the expression data in the context of the 3.9M gene catalogue
generated from 396 stool samples by Nielsen et al.21, we matched microarray design
gene set to the new gene catalogue. Previously, the 3.9M gene catalogue was
annotated with KEGG orthology and was structured into 741 metagenomic
species21, referred to as species in the majority of the manuscript. 201,071 genes
could be assigned to one of the 741 species.

Significant gene expression. Transcriptionally active genes were inferred using a
one-sided Student’s t-test by comparing the microarray signal of each gene between
samples in which a species that contained the gene was present or absent based on the
metagenomics data described above. Genes from species with at least two genes
assigned for species that were present and absent in at least 10% samples were tested.
To fulfil the latter requirement for three species (MGS:6, MGS:9 and MGS:25),
their abundance in samples below tenth quintile was set to zero. In total, we tested
186,231 genes from 375 species and accepted a gene to be significantly expressed
at a q value <0.05 (ref. 31). We then summarized the expressions of genes across
samples in matrix X by transforming the microarray signal for significantly expressed
genes into Z scores:

Xgs =
Egs −MEga

SDEga

where E, M and SD stand for microarray signal, mean and standard deviation. Subscript
g is the gene index, s is the sample index for samples in which the gene is present and a is
the sample index for samples in which the gene is absent. Negative entries and entries
for genes absent in a sample were set to 0.

The effect of the metagenomic sequencing depth on the detection of significantly
expressed genes was tested by re-running the Student’s t-test (described above) at
downsizing levels below the original downsizing of 11M sequence reads (that is,
from 10M to 1M with an interval of 1M sequence reads), which degenerated the
species detection signal and increased the noise-to-signal ratio in calling
significantly expressed genes.

Identification of coexistence-associated gene-expression changes. To identify gene-
expression changes associated with coexistence between specific species pairs we tested
each gene from potential responder species in a species pair, but only if the species was
represented by 100 or more genes on the microarray (n = 277). Furthermore, only
species pairs (consisting of a potential responder species and potential companion

species) for which each species was found independently in ten or more samples, each
was found together in ten or more samples and both were absent in ten or more
samples (4 × 10) were tested (n = 40,608 species pairs). These filtering criteria were
selected to ensure sufficient data for the statistical model to capture the microarray-
background signal and the independent signal from the two species. Although the
tested gene belongs to the responder species, modelling of the effect of the companion
species was intended to capture potential cross-hybridization signals from that species.
Each responder-gene expression level (the dependent variable) was tested
independently in a linear two-way ANOVA model with the presence/absence of the
companion and responder species as main factors, and the abundance of the
responder species as an error factor. Importantly, this allowed for the inference of a
companion/responder-species-interaction effect on the gene expression
independently of the responder-species abundance. In other words, the statistical
model corrects for the abundance of the responder species. Genes with a false discover
rate31 <0.1 for the interaction effect between the responder and companion factor were
considered significantly coexistence associated.

Furthermore, each responder–companion species pair was tested for
overrepresentation of genes with the expression changed associated with coexistence
(Fisher’s exact test, upper tail, P < 0.05, Bonferroni corrected) and significantly
interacting species pairs were represented in the network in Fig. 1c using
Cytoscape 3.0 (ref. 32).

Functional analysis. The gut microbial gene catalogue provided by Nielsen et al.21

was annotated with KEGG orthology identifiers that we linked to the respective
KEGG modules and pathways using an in-house version of the KEGG BRITE
database. We tested significant interactions between microbial species for
overrepresentation of functions belonging to KEGG modules or pathways (Fisher’s
exact test, upper tail P < 0.05, Bonferroni corrected).

Experimental validation. To verify the transcriptional interference observed
between microbial species in the natural environment of the human gut, controlled
experiments were set up for the following responder–companion bacterial pairs:
(a) E. sireaum and B. coprocola, (b) B. coprocola and Dialister invisus,
(c) B. hydrogenotrophica and Dorea longicatena and (d) B. eggerthii and
D. invisus. Bacterial-type strains were obtained from the German Culture Collection
(DSMZ). Bacteria were cultured overnight in 10 ml of brain heart infusion (BHI)
broth (Fluka) at 37 °C under anaerobic conditions. The sterile BHI broth (2 ml) was
placed in both the top and bottom wells of a six-well Transwell plate (0.4 um
polyester membrane, 24 mm insert (Costar)). In triplicate, 20 µl of overnight culture
of the companion bacteria was placed in the bottom well, and 20 µl of overnight
culture from the responder bacteria was placed in the top well. The same bacteria
type (20 µl) was inoculated into both the top and bottom wells of another Transwell
plate to serve as a control. Cultures in Transwell plates were grown anaerobically for
18 hours at 37 °C. The responder bacteria culture was then collected, spun down
with RNA protector and frozen at −80 °C for later RNA extraction. RNA was
extracted using the RNeasy Mini Kit (Cat. No. 74104) from Qiagen. The RNA
(200 ng) was used to synthesize cDNA using gene-specific primers and the
RevertAid First Strand cDNA Synthesis Kit (#K1621 from Thermo Scientific). Gene
expressions for selected genes were analysed by quantitative real-time PCR and
differentail expression was tested using Student’s t-test (Supplementary Table 4).
Each sample was run in triplicate. The average threshold cycle number (Ct) values of
the samples were obtained from each case. The relative gene expression was
calculated using delta Ct (ΔCt) as an exponent of 2 (2ΔCt). ΔCt was calculated with
the average from the triplicates as follows: ΔCt = average Ct (control sample) –
average Ct (co-culture sample).

Data availability. Microarray data can be found at the GEO database under
accession code GSE76590.
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