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Dissemination of antibiotic resistance genes from
antibiotic producers to pathogens
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It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic

bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and

experimental evidence supporting this hypothesis. We identify genes in proteobacteria,

including some pathogens, that appear to be closely related to actinobacterial ARGs known to

confer resistance against clinically important antibiotics. Furthermore, we identify two

potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial

pathogens. Based on this bioinformatic evidence, we propose and experimentally test a

‘carry-back’ mechanism for the transfer, involving conjugative transfer of a carrier sequence

from proteobacteria to actinobacteria, recombination of the carrier sequence with the

actinobacterial ARG, followed by natural transformation of proteobacteria with the

carrier-sandwiched ARG. Our results support the existence of ancient and, possibly, recent

transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide

evidence for a defined mechanism.
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T
he discovery of antibiotics from microorganisms and their
development into clinical drugs constitutes one of the
greatest advances in medical history, but the acquisition

and dissemination of genes that confer antibiotic resistance
among pathogens has severely curtailed the effectiveness of many
of these compounds. Elucidating the origins of these antibiotic
resistance genes (ARGs) and the mechanisms mediating
their spread to pathogens is consequently a public health
priority1. Actinobacteria, especially of the genus Streptomyces,
produce many clinically important antibiotics. In most cases, the
gene clusters encoding the biosynthesis of these compounds also
contain resistance genes as a self-protecting mechanism towards
these compounds2 or to modulate their signalling activity3.
As early as 1973, it was hypothesized that the enzymes found
in Gram-negative pathogens that inactivate aminoglycoside
antibiotics could have originated from the ARGs of actino-
bacteria that produce this class of antibiotics through ancient
horizontal gene transfer (HGT), based on the discovery that they
employ the same enzymatic mechanisms4. This ‘producer
hypothesis’ was subsequently proposed for additional ARGs, for
example, some class-A b-lactamases5 in Gram-negative patho-
gens, and erythromycin6 and vancomycin resistance genes7 in
Gram-positive pathogens. However, in these cases the sequence
similarities between ARG proteins in actinobacteria and
Gram-negative pathogens are low, making it difficult to
distinguish if they result from ancient HGT or from other types
of evolutionary processes8.

Compared with ancient transfers, recent ARG dissemination
from actinobacteria to pathogens may pose an even more urgent
threat to human health9, as actinobacterial ARGs make up
a large portion of the environmental resistome. In addition to
self-protecting ARGs, most actinobacteria also carry ARGs
horizontally obtained from other actinobacteria6,10. In an
investigation of actinomycetes from soil, isolates were on average
resistant towards seven to eight antibiotics from a collection of 21
representative antibiotics11. In a functional metagenomics study
using Escherichia coli as an expression host, actinobacteria were
found to be the most enriched source of resistance-conferring DNA

fragments relative to their abundance12. However, since no recent
transfer from actinobacteria to Gram-negative pathogens has been
discovered and many recent studies showed that phylogenetic and
ecological boundaries are two major ARG transfer barriers12–15, the
clinical relevance of this large resistome remains unclear16,17.

Here, we examine a large collection of known Streptomyces
ARGs, and find more examples supporting the ‘producer
hypothesis’. Specifically, we provide evidence that two ARGs
conferring resistance against chloramphenicol and lincomycin
might have been recently transferred from actinobacteria to
human and animal pathogens. Based on their surrounding
sequence, we propose and test a potential mechanism mediating
gene transfer from Gram-positive actinobacteria to Gram-
negative pathogens.

Results
Actinobacterial ARGs have related proteins in proteobacteria.
Proteobacteria encompass many important human pathogens
such as Escherichia coli, Pseudomonas aeruginosa and others. We
therefore sought to examine the similarity between corresponding
ARGs in actinobacteria and proteobacteria. First, we extracted all
experimentally validated Streptomyces ARG proteins from
ARDB18 and CARD19 databases. A majority (39 of 57) of them
are reported to have self-protecting roles or are located within
antibiotic biosynthesis gene clusters as analysed by antiSMASH20

(Supplementary Data 1). Their most similar homologues in
proteobacteria were subsequently identified from the NCBI
non-redundant protein database by BLASTP, with sequence
identities ranging from 23 to 68%. Seven of these proteobacterial
proteins have sequences more similar to actinobacterial proteins
than to proteins from any other phyla, including proteobacteria
(Supplementary Data 1). Furthermore, phylogenetic trees were
constructed and showed that 12 (including the above seven) of
the proteobacterial proteins may have originated from
actinobacteria by interphylum HGT (Fig. 1 and Supplementary
Fig. 1)21. Potential HGTs in the opposite direction, from
proteobacteria to actinobacteria, were also noticed in some
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trees. In particular, the Streptomyces ARG sul1 (AFN41071.1)
shares 95% sequence identity with a proteobacterial gene
(Supplementary Fig. 1).

By examining neighbouring genes, we also found evidence for
potential cotransfer of additional genes in the case of the ARG pac
(conferring resistance to puromycin). The products of six
neighbouring genes also show higher similarity to actinobacterial
proteins than to proteins from any other phyla, suggesting that
they might have been transferred together from actinobacteria to
proteobacteria (Supplementary Fig. 2).

Of the 12 proteobacterial proteins that might have originated
from actinobacteria, nine are encoded in genomes of environ-
mental species, one of which has close homologues encoded in
the genomes of pathogens from the database PATRIC22. The
other three proteins are harboured by pathogens, including
the well-known aminoglycoside-inactivating phosphotransferase
APH(300) (WP_031942890.1)4.

Recent ARG transfers from actinobacteria to proteobacteria.
By analysing DNA sequence composition signatures using
RAIphy23, we found that two of the proteobacterial proteins,
chloramphenicol exporter Cmx (WP_005297378.1) and
lincomycin exporter LmrA (WP_038989331.1), may have been
recently transferred from actinobacteria, since the proteobacterial
genes still retain actinobacterial sequence signatures
(Supplementary Data 2)8. Cmx is found in clinical isolates
of P. aeruginosa, Klebsiella oxytoca and Enterobacter asburiae
(Supplementary Data 3). It is 63% identical (100% coverage) to the
chloramphenicol resistance protein (P31141) from Streptomyces
lividans 66 (ref. 24), and 52% identical (99% coverage) to
the self-protecting resistance protein (WP_015032122.1) from
chloramphenicol producer Streptomyces venezuelae (Suppleme-
ntary Fig. 3). Furthermore, its gene was found to be identical
or almost identical (identity over 99%) to genes from many
non-Streptomyces actinobacteria (Fig. 2), further supporting that
the interphylum gene transfer happened recently.

Possible mechanisms of the ARG transfers. Conjugation or
transduction from actinobacteria to proteobacteria has so far not
been described. Many proteobacteria can take up free DNA
through natural transformation, but because of low sequence
similarity, actinobacterial DNA has a low probability of being
incorporated into proteobacterial genomes by homologous
recombination25. In theory, the DNA can be inserted randomly
by non-homologous end joining, but the frequency is extremely
low26. Transposase/integrase-mediated recombination after
natural transformation is possible if a transposase or integrase
is encoded in the DNA and can be expressed before the DNA is
degraded27. We noticed that cmx is colocalized with an
actinobacterial transposase gene tnp45 forming a transposon28,
and the intact transposon can be found in both actinobacteria and
proteobacteria (Fig. 2). Initially, we hypothesized that a DNA
fragment containing the transposon released from dead
actinobacteria could be taken up by proteobacteria, and the
transposon could insert itself into the new genome by the activity
of its transposase. To test this hypothesis, we examined if
the transposition activity, which has been experimentally
validated in Corynebacterium glutamicum29, was also functional
in proteobacteria. However, no transposition was detected
in our experimental set-up (details are described in Methods
section).

However, by further analysing the DNA sequence flanking the
cmx transposon in both phyla, we arrived at a different hypothesis
to explain the interphylum HGT, which we call the ‘carry-back’
model (Fig. 3a). First, a proteobacterial sequence is transferred
from proteobacteria into actinobacteria by conjugation, a
mechanism known to be highly efficient30. Next, it recombines
with actinobacterial DNA, for example, by the transposition of
cmx transposon, forming a sandwich structure of actinobacterial
DNA flanked by proteobacterial DNA. Then, the sandwich
structured DNA released from dead actinobacterial cells is taken
up by nearby proteobacteria through natural transformation and
incorporated via homologous recombination. In support of this
‘carry-back’ model, we identified DNA sequences representing all
the proposed intermediates (Fig. 3b and Supplementary Data 4).
The carrier sequence is a fragment from class 1 integron In4,
composed of an IS6100 insertion sequence, an acyltransferase
gene (orf5) and sul1 (ref. 31). This sequence is widely distributed
among proteobacteria, and frequently found on conjugative
plasmids (Fig. 3b). The same carrier sequences can be also found
in actinobacteria, for example, in Corynebacterium diphtheriae
BH8. Part of the carrier sequence, the sul1 gene, can be found in
Streptomyces sp. 1AL4 (ref. 32). The sandwich structure with cmx
transposon inserted between IS6100 and orf5 is found in
C. diphtheriae BH8 (Fig. 3b) and Corynebacterium resistens
plasmid pJA144188 (Fig. 3c), although with additional resistance
genes and mobile elements inserted as well. The final product
of the interphylum transfer, the sandwich structure in
proteobacterial genome, is found in E. asburiae 35642 and
K. oxytoca CHS143 (Fig. 3b). All these intermediates fit the
proposed ‘carry-back’ model, and appear to be stably maintained
in their respective hosts, thus potentially providing sufficient time
for the multistep process to be accomplished.

The ‘carry-back’ model is also supported by the second case of
potential recent transfer that we have identified in the in silico
studies. LmrA (WP_038989331.1), found in Salmonella enterica
and Escherichia coli isolated from farm animals, is 50% identical
to the self-protecting lincomycin pump CAA42550 from
Streptomyces lincolnensis. Its gene and an adjacent regulator gene
still retain actinobacterial sequence signatures (Supplementary
Data 3), suggesting that they may have been transferred from
actinobacteria recently. Interestingly, they are located in an
RSF1010-like plasmid (Supplementary Fig. 5), which could have
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served as the carrier sequence as the ability of RSF1010
(NC_001740.1) to be mobilized by conjugation from E.coli into
Streptomyces and Mycobacterium has been documented33.

Experimental reconstruction of the interphylum transfer of cmx.
To provide further evidence for the hypothesis, we reproduced
the interphylum gene transfer of cmx experimentally. C. resistens
DSM 45100, which naturally has the sandwich structure
sequence, was used as the actinobacterial cmx donor. Acineto-
bacter baylyi ADP1, a model strain for HGT studies27,34 (Fig. 3c)
with a cloned IS6100-orf5-sulI sequence, was used as the cmx
acceptor to mimic proteobacterial pathogens with the same
sequence, such as Acinetobacter baumannii D4 (Supplementary
Data 4). Heat-killed and lysed C. resistens cells were added into
A. baylyi ADP1 culture, incubated and followed by selection on
kanamycin plate (kanamycin resistance was coded by the
Tn5393e inserted between cmx and tnp45 in C. resistens, see
Fig. 3c). The obtained colonies showed no chloramphenicol
resistance, probably because the promoter activity was disrupted
by the IS1628 inserted in front of cmx (Fig. 3c). However,
the existence of cmx in these colonies was confirmed by colony
PCR and sequencing (Fig. 3e), demonstrating that the cmx gene
was transferred to A. baylyi. The negative control, an A. baylyi
ADP1 strain without IS6100-orf5-sulI sequence, did not generate
any colonies after the same treatment (Fig. 3d), confirming the
involvement of the carrier sequence in the ARG transfer.

To confirm the resistance activity of cmx in proteobacteria, we
cloned an intact cmx transposon free of IS1628 into E. coli and
observed increased chloramphenicol tolerance when promoters
were provided (Supplementary Fig. 6)29.

Possible dissemination route of cmx. Cmx family proteins are
widely spread among Streptomyces and other actinobacteria. Its
recruitment into tnp45 transposon may have occurred in soil
environment, as both free cmx and transposon-carried cmx have
been found in soil actinobacteria. For example, C. glutamicum
1014 contains cmx on the tnp45 transposon, whereas Arthrobacter
sp. 161MFSha2.1 contains cmx but not tnp45. The two cmx genes
are 93% identical (Supplementary Fig. 7). We hypothesize
that the cmx transposon found in commensal and pathogenic
actinobacteria was probably obtained from the related strains
from soil. Then, the cmx transposon might have been transferred
into Gram-negative pathogens by the ‘carry-back’ mechanism.
Currently, cmx transposon-harbouring pathogens have been
isolated in Asia, Europe, United States of America and especially
South America (Supplementary Data 3).

Discussion
Clinical ARGs have complex and diversified origins6,16, and our
results indicate that some of them might have originated from
actinobacteria. Ancient ARG transfers are proposed to have
occurred in soil environments and then passed on to pathogens in
modern times35. Recent transfers from actinobacteria to
pathogens might also be possible, as suggested by the examples
of cmx and lmrA.

Proteobacteria are well known to be able to transfer DNA to
organisms from other phyla and even other kingdoms by
conjugation34. A recent study suggested that conjugation from
proteobacteria to actinobacteria might happen frequently in
soil30. Thus, the ‘carry-back’ mechanism might have mediated the
HGTs from actinobacteria to proteobacteria in soil using
conjugative plasmids as the carrier sequence. In modern times,
likely caused by increased selection pressure due to the extensive
use of antibiotics, mobile genetic elements including conjugative
plasmids, integrons and transposons tend to be clustered together

with ARGs forming mobile multidrug-resistant units. These
units showed extraordinary capability of spreading among
commensals, pathogens and even environmental bacteria in
water and soil36. Not surprisingly, the cmx carrier sequence was
from a widespread conjugative class I integron and is composed
of the IS6100 transposon and another resistance gene sul1.
Accordingly, the cmx carried back was incorporated into such
units, facilitating further dissemination.

In addition to being a gene transfer barrier, different phyla also
mean distinct cell environments for gene expression, regulation
and protein function37. For example, due to the different
cell membrane structure in proteobacteria, drug efflux pumps
like Cmx and LmrA will export compounds into the periplasm
instead of the extracellular environment as in actinobacteria.
Future studies are required to understand how newly obtained
resistance genes and their new hosts will evolve after the gene
transfer.

Methods
Homologues of Streptomyces ARG proteins in proteobacteria. All 87 ARG
proteins of the genus Streptomyces in ARDB18 and CARD19 databases were
downloaded (October 2016). They were further manually curated by removing
artificial constructs (ARGs used as selective marker during Streptomyces genetic
engineering) and dereplicating proteins with high sequence similarity (identity over
95% with each other). Then, they were used as queries in BLASTP analyses against
the NCBI non-redundant protein database of proteobacteria to find their most
similar homologues. Some of the best hits were found to be caused by sequence
contamination (by the following method), that is, they were actually from
actinobacteria but mislabelled as proteobacterial proteins in the database. In this
case, the next best hit was analysed by the same method until a true proteobacterial
protein was found. In addition, the identified proteobacterial proteins were
searched (BLASTP) against the non-redundant protein database of all phyla
to see if they were more similar to actinobactieral proteins than to proteins
from other phyla.

Sequence contamination check. Because HGT studies are very sensitive to cross-
contaminations in the sequence data, a manual check of possible contaminations
was performed: if the best BLAST hit was from a fully assembled genome or
circular plasmid sequence with experimentally determined source organism to be
proteobacteria, then the hit was considered as a true proteobacterial protein. In
cases where the best hit was a contig instead of a full genome, then the protein was
considered as a true proteobacterial protein only if the contig was 10 kbp or larger
and the contig had the best sequence match to other proteobacterial sequences in
the ‘nt’ database. If the contig had best nucleotide matches against ‘nt’ from
actinobacteria, it was considered an artefact caused by contamination.

BLAST against PATRIC. The proteobacterial proteins were BLASTed against
pathogen genome database PATRIC (https://www.patricbrc.org/app/BLAST, with
sequence identity threshold of 90%) to see if they have close homologues in
pathogens.

Comparison of the neighbouring area of the ARGs. In search of cotransfer of
addition genes, neighbouring area of the ARGs were compared between the
Streptomyces genomes and proteobacterial genomes by MultiGeneBlast using
amino-acid translation sequences38.

Bacterial genome databases for phylogenetic tree construction. All protein
data sets of bacterial genomes were downloaded from the NCBI RefSeq database
available at ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/ (October 2016).
The collection covers 64,580 genomes and 55,667,859 unique proteins. To avoid
contaminated genomes, we have excluded genomes that either lack the 16S rRNA
gene or have multiple copies of 16S rRNA genes from multiple species.

Construction of phylogenetic trees. BLAST analysis for each ARG protein was
performed using blastp command of NCBI BLAST version 2.2.31þ , with the
following parameters: the maximum target sequence of 55 million sequences and
E value below 1E� 50. A genome was considered if it has a hit with a minimum
30% identity and 80% coverage where coverage is defined as (number of matched
amino acidþ number of mismatched amino acidþ gaps)/(query protein length).
To simplify the phylogenetic tree, we normalized the number of hits to
100 genomes, considering the best hit per species, genus or maximum order.
We then constructed phylogenetic trees for these genomes based on their
16S rRNA and constructed phylogenetic trees for the ARGs based on their
protein sequences. Sequences were multiply aligned using MAFFT39, considering
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the local alignment option with default settings for the other parameters, then
optimized and phylogenetic trees were generated, using the FastTree methods40.
The generated host and ARG trees were visualized using ETE 3 package41.

DNA sequence signature analysis. RAIphy23 was used to analyse gene sequences
to find their most likely taxonomic source. Relative abundance index (RAI) is
calculated from the over- and underabundance statistics collected for each taxon.
The set of RAI profiles was extracted from 2,773 complete bacterial genomes
downloaded from NCBI ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/
Bacteria/ (March 2016). To avoid false taxonomic assignment, we excluded
plasmids and genomes below 1 Mbp.

Strains and media. P. aeruginosa PA7, C. urealyticum DSM 7109 and C. resistens
DSM 45100 were obtained from DSMZ and cultured in DSMZ media. E. coli DH5a
and A. baylyi ATCC33305 cultures were cultured in Luria-Bertani (LB) medium.
Antibiotics were added at the following concentrations: ampicillin, 50 mg ml� 1;
kanamycin, 50mg ml� 1; gentamicin, 20mg ml� 1. Chloramphenicol was added at
indicated concentrations.

Cloning of cmx transposon and the carrier sequence. The cmx transposon was
PCR amplified from P. aeruginosa PA7 by primer xj143 (as both forward and
reverse primer). Plasmid backbone was amplified from plasmid pKD46 by primer
xj144 and xj145. The two PCR products were assembled by Gibson reaction,
transferred into E. coli DH5a and selected on Amp plates. Insertion direction of
cmx transposon was determined by sequencing with primer xj146. The resulted
plasmids with cmx transposon in the same or opposite direction with the plasmid
repA gene were named as pXJ79 and pXJ80, respectively. pXJ79cu and pxj80cu
were constructed likewise except that the cmx transposon was amplified from
C. urealyticum DSM 7109. pXJ79 was amplified with primer xj177and xj178, the
product was recircularised by Gibson reaction, generating pXJ79a. By this way,
promoter pLac was inserted in front of the cmx transposon. The carrier sequence
was amplified from P. aeruginosa BM4530 with primer xj173 and xj174.1 and
cloned on a plasmid backbone amplified from pUCP24 with primer xj171.1 and
xj172, generating pXJ83. Phusion Hot Start II DNA Polymerase for PCR was from
Thermo Fisher. Gibson Assembly Master Mix was from New England Biolabs.
Primer sequences are listed in Supplementary Table 1.

Test of transposition activity in E.coli. E.coli DH5a/pXJ79cu and E.coli
DH5a/pXJ80cu were cultured in LB containing ampicillin and chloramphenicol,
respectively, at 30 �C. Subculturing was repeated five times at 1:100 dilution. After
that, 0.1 ml was inoculated into 10 ml fresh LB and cultured at 42 �C overnight to
eliminate the plasmids, and then spread on LB agar containing 2.5 mg ml� 1

chloramphenicol and culture at 37 �C until colonies appeared. The colonies were
checked by colony PCR using primer xj144 and xj145 to see if they still had the
plasmids. PCR-positive colonies were subjected to another round of plasmid
elimination and chloramphenicol-sensitive test as described above.

Natural transformation of A. baylyi. Fifty microlitres overnight culture of
A. baylyi ATCC33305/pXJ83 was inoculated into 1 ml fresh LB and incubated for
2 h at 120 r.p.m. C. resistens DSM 45100 cells from 1 ml overnight culture was
washed with water, boiled for 15 min and mixed with the fresh A. baylyi culture.
Two hundred micolitres of the mixture was spread on top of 1 ml LB agar
(in 12-well plate) and cultured overnight. Then, cells were transferred to LB plates
containing kanamycin. Colonies were randomly picked and checked by colony
PCR using primer xj130 and xj131 for the presence of cmx.

Data availability. The authors declare that all the relevant data are provided in
this published article and its Supplementary Information files, or are available from
the corresponding authors on request.
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