Lung function response to intravenous antibiotic treatment in a paediatric CF population in East of England
Y.P. Delgado-Peña1, L. Thanikkel1, P. Anjāy1, C. Kavanagh1, Norfolk and Norwich University Hospital, Paediatrics Respiratory Medicine, Norwich, United Kingdom

Objectives: Our purpose was to characterize the Forced Expiratory Volume in 1 second (FEV1) and forced expiratory flow rate between 25% and 75% of vital capacity (FEF25–75) response to intravenous antibiotic therapy in our CF paediatric population between January 2015 and December 2015.

Methods: Data were obtained from a retrospective and descriptive analysis of IV treatment courses given during January to December 2015 to CF children attending the Norfolk and Norwich University Hospital with documented and valid spirometric measures of lung function forced vital capacity (FVC), FEV1, and FEF25–75. Results were compared as differences of FEV1 % predicted and FEF25–75 % predicted at the beginning and at end of an IV antibiotic course. Results were analyzed using paired t-tests. P values < 0.05 were considered statistically significant. Statistical analysis was performed and correlated with others clinical variables studied.

Results: 35 IV antibiotic courses from 18 CF patients aged between 6 and 17 years were examined. Valid lung function courses were identified. Intravenous antibiotic treatment given to CF paediatric patients resulted in a significant improvement of FEV1, % predicted (p = 0.002) and FEF25–75 % predicted (p = 0.024) in lung function when patients are treated. Duration of antibiotic treatment didn’t have any correlation with this improvement (Pearson correlation = 0.00019).

Conclusion: This study demonstrates a significant improvement in FEV1, % predicted and FEF25–75 % predicted to antibiotic IV treatment in paediatric CF patients.

S127 Collateral sensitivity cycling of antibiotics for cystic fibrosis airway infections
L.M. Sommer1, L. Imamovic2, T. Pressler1, M.O. Sommer2, S. Molin1, H.K. Johansen1, 2, 1 Rigshospitalet, Department of Clinical Microbiology, Copenhagen, Denmark; 2 Technical University of Denmark, Novo Nordisk Foundation, Center for Biosustainability, Horsholm, Denmark; 3 Technical University of Denmark, Department of Systems Biology, Lyngby, Denmark

Objectives: The main cause of morbidity and mortality in cystic fibrosis (CF) patients is bacterial airway infections, and to combat these infections the patients are treated with large amounts of antibiotics. Despite the treatments, the infections (in particular by Pseudomonas aeruginosa) persist. P. aeruginosa is inherently resistant to many antibiotics and develops multi-resistance over time, resulting in major limitations of antibiotic treatment possibilities. Therefore we propose the use of antibiotic “Collateral drug cycling” for treatment of both initial persistent infections as well as chronic infections with P. aeruginosa.

Methods: Treatment of CF patients with the collateral drug cycling approach is a way to secure a continued treatment of the infection, with lower risks of creating resistant bacterial populations.

Results: For P. aeruginosa reference strain PA01 collateral sensitivity has been found, where e.g. treatment with Ciprofloxacin and Aztreonam results in decreased resistance towards Tobramycin. This will be further tested in P. aeruginosa clinical isolates from multiple CF patients and should be directly applicable for the design of new treatment strategies.

Conclusion: If the collateral sensitivity can be translated directly to clinical treatment regimes, this is specifically useful for the treatment of chronically infected CF patients. This antibiotic treatment approach will also be applicable in other infection scenarios where resistance against one or multiple antibiotics has occurred.

128 Antimicrobial susceptibility of Pseudomonas aeruginosa in Vilnius CF children centre, Lithuania
V. Radziunienė1, O. Kincinienė2, P. Kalibatšas2, 1 Vilnius City Clinical Hospital, Vilnius, Lithuania; 2 Vilnius University, Faculty of Medicine, Vilnius, Lithuania

Objectives: In this study our objective was to analyse the frequency of microorganisms and composition of antimicrobial susceptibility of isolated Pseudomonas aeruginosa.

Methods: 97 sputum samples or cough swab or BAL were obtained from 30 patients under 18 years old (2–17 years) during 1 year period – from January to December 2015. 81 samples were positive with 31 different species and were tested for isolation, identification and antimicrobial susceptibility.

Results: Out of all positive samples the most common pathogens were S. aureus – 51.85%. Pseudomonas aeruginosa was isolated in 50.62% of samples. 34.15% of Pseudomonas aeruginosa is detected as mucoid form. 100% of Pseudomonas aeruginosa strains were susceptible to colistin, 76.6% to ciprofloxacin, 76% to imipenem, 56% to ceftazidim, 54% to piperacillina, 50% to tobramycin, 33.3% to amikacin. Pseudomonas aeruginosa resistance to gentamicin is 67.3%, to amikacin 51.5%, to tobramycin 50%.

Conclusion: The most common isolated pathogens were found to be S. aureus and Pseudomonas aeruginosa. High resistance to medications used in first line Pseudomonas aeruginosa infection treatment suggest the need to adapt our treatment regimes to more suitable ones.

129 Susceptibility of Staphylococcus aureus isolates from patients with and without cystic fibrosis to cefotiboprole
D. Gipini1, G. Carsoni2, A. Lee3, S. McGrath2, J.S. Elborn3, M.M. Tunney4, 1 Queens University Belfast, Belfast, United Kingdom

Introduction: Cefotioboprole is a broad spectrum “5th generation” cephalosporin antibiotic, which has demonstrated activity against Gram-positive cocci, including Metillicin sensitive and resistant Staphylococcus aureus (MSSA and MRSA). This study aimed to compare the susceptibility of a range of MSSA and MRSA isolates from both CF and non-CF patients, to cefotioboprole and comparator antibiotics.

Methods: The susceptibility of MSSA (CF: n = 25; non-CF: n = 24) and MRSA (CF: n = 24; non-CF: n = 29) isolates to cefotioboprole, linezolid, rifampicin and vancomycin was determined using E-test® strips with minimum inhibitory concentrations read after 24h of incubation at 37°C. Where possible, isolates with a diverse genetic background were selected for inclusion in this study. Isolates were classified as either susceptible, intermediate or resistant to each antibiotic in accordance with Clinical and Laboratory Standards Institute breakpoints.

Results: No MSSA isolates tested were resistant to any of the antibiotics tested. Of the MRSA isolates tested, 3/53 (5.6%), all from CF patients, were resistant or intermediately resistant to rifampicin.